博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
各种排序算法比较
阅读量:5790 次
发布时间:2019-06-18

本文共 2943 字,大约阅读时间需要 9 分钟。

1.稳定性比较

 插入排序、冒泡排序、二叉树排序、二路归并排序及其他线形排序是稳定的

 选择排序、希尔排序、快速排序、堆排序是不稳定的

2.时间复杂性比较

 插入排序、冒泡排序、选择排序的时间复杂性为O(n2)

 其它非线形排序的时间复杂性为O(nlog2n)

 线形排序的时间复杂性为O(n);

3.辅助空间的比较

 线形排序、二路归并排序的辅助空间为O(n),其它排序的辅助空间为O(1);

4.其它比较

插入、冒泡排序的速度较慢,但参加排序的序列局部或整体有序时,这种排序能达到较快的速度。反而在这种情况下,快速排序反而慢了。

当n较小时,对稳定性不作要求时宜用选择排序,对稳定性有要求时宜用插入或冒泡排序。

若待排序的记录的关键字在一个明显有限范围内时,且空间允许是用桶排序。

当n较大时,关键字元素比较随机,对稳定性没要求宜用快速排序。

当n较大时,关键字元素可能出现本身是有序的,对稳定性有要求时,空间允许的情况下。宜用归并排序。

当n较大时,关键字元素可能出现本身是有序的,对稳定性没有要求时宜用堆排序。

相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):

1、稳定排序和非稳定排序

简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。反之,就是非稳定的。比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。

 

2、内排序和外排序

在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

================================================

功能:选择排序

输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

在要排序的一组数中,选出最小的一个数与第一个位置的数交换;

然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环
到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。算法复杂度O(n^2)--[n的平方]

================================================

功能:直接插入排序

输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排

好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。

直接插入排序是稳定的。算法时间复杂度O(n^2)--[n的平方]

=====================================================

功能:冒泡排序

输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上

而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较
小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要
求相反时,就将它们互换。
 
下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的
位置k,这样可以减少外层循环扫描的次数。

冒泡排序是稳定的。算法时间复杂度O(n^2)--[n的平方]

================================================

功能:希尔排序

输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,并对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。

 
下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,以后每次减半,直到增量为1。

希尔排序是不稳定的。

================================================

功能:快速排序

输入:数组名称(也就是数组首地址)、数组中起止元素的下标

算法思想简单描述:

快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟

扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次
扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只
减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)
的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理
它左右两边的数,直到基准点的左右只有一个元素为止。它是由
C.A.R.Hoare于1962年提出的。显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的函数是用递归实现的,有兴趣的朋友可以改成非递归的。

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n^2)--[n的平方]

================================================

功能:堆排序

输入:数组名称(也就是数组首地址)、数组中元素个数

算法思想简单描述:

堆排序是一种树形选择排序,是对直接选择排序的有效改进。 堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点 的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

堆排序是不稳定的。算法时间复杂度O(nlog2n)。

转载于:https://www.cnblogs.com/tchroot/p/6583221.html

你可能感兴趣的文章
吃午饭前,按书上的代码写会儿--Hunt the Wumpus第一个版本
查看>>
easyui中combobox的值改变onchang事件
查看>>
Eclipse魔法堂:任务管理器
查看>>
一周自学动态站点设计
查看>>
Android-Universal-Image-Loader
查看>>
Android 从硬件到应用:一步一步向上爬 4 -- 使用 JNI 方法调硬件驱动
查看>>
TEST
查看>>
loadrunner 的Administration Page里面设置
查看>>
程序员喜欢怎样的职位描述?(转)
查看>>
威胁快报|ProtonMiner挖矿蠕虫扩大攻击面,加速传播
查看>>
PAT A1116
查看>>
App上架/更新怕被拒? iOS过审“避雷秘籍”请查收
查看>>
CentOS 7 防火墙操作
查看>>
关于 top 工具的 6 个替代方案
查看>>
程序员最讨厌的9句话,你可有补充?
查看>>
PAT A1037
查看>>
浅谈RPC
查看>>
TextView 超链接点击跳转到下一个Activity
查看>>
sql server 2008安装的时候选NT AUTHORITY\NEWORK SERVICE 还是选 NT AUTHORITY\SYSTEM ?
查看>>
MyBatis3-SqlSessionDaoSupport的使用
查看>>